B1 SOX Coordinate Cell Specification with Patterning and Morphogenesis in the Early Zebrafish Embryo
نویسندگان
چکیده
The B1 SOX transcription factors SOX1/2/3/19 have been implicated in various processes of early embryogenesis. However, their regulatory functions in stages from the blastula to early neurula remain largely unknown, primarily because loss-of-function studies have not been informative to date. In our present study, we systematically knocked down the B1 sox genes in zebrafish. Only the quadruple knockdown of the four B1 sox genes sox2/3/19a/19b resulted in very severe developmental abnormalities, confirming that the B1 sox genes are functionally redundant. We characterized the sox2/3/19a/19b quadruple knockdown embryos in detail by examining the changes in gene expression through in situ hybridization, RT-PCR, and microarray analyses. Importantly, these phenotypic analyses revealed that the B1 SOX proteins regulate the following distinct processes: (1) early dorsoventral patterning by controlling bmp2b/7; (2) gastrulation movements via the regulation of pcdh18a/18b and wnt11, a non-canonical Wnt ligand gene; (3) neural differentiation by regulating the Hes-class bHLH gene her3 and the proneural-class bHLH genes neurog1 (positively) and ascl1a (negatively), and regional transcription factor genes, e.g., hesx1, zic1, and rx3; and (4) neural patterning by regulating signaling pathway genes, cyp26a1 in RA signaling, oep in Nodal signaling, shh, and mdkb. Chromatin immunoprecipitation analysis of the her3, hesx1, neurog1, pcdh18a, and cyp26a1 genes further suggests a direct regulation of these genes by B1 SOX. We also found an interesting overlap between the early phenotypes of the B1 sox quadruple knockdown embryos and the maternal-zygotic spg embryos that are devoid of pou5f1 activity. These findings indicate that the B1 SOX proteins control a wide range of developmental regulators in the early embryo through partnering in part with Pou5f1 and possibly with other factors, and suggest that the B1 sox functions are central to coordinating cell fate specification with patterning and morphogenetic processes occurring in the early embryo.
منابع مشابه
Dynamic Coupling of Pattern Formation and Morphogenesis in the Developing Vertebrate Retina
During embryonic development, pattern formation must be tightly synchronized with tissue morphogenesis to coordinate the establishment of the spatial identities of cells with their movements. In the vertebrate retina, patterning along the dorsal-ventral and nasal-temporal (anterior-posterior) axes is required for correct spatial representation in the retinotectal map. However, it is unknown how...
متن کاملSplit top: a maternal cathepsin B that regulates dorsoventral patterning and morphogenesis.
The vertebrate embryonic dorsoventral axis is established and patterned by Wnt and bone morphogenetic protein (BMP) signaling pathways, respectively. Whereas Wnt signaling establishes the dorsal side of the embryo and induces the dorsal organizer, a BMP signaling gradient patterns tissues along the dorsoventral axis. Early Wnt signaling is provided maternally, whereas BMP ligand expression in t...
متن کاملTranscriptional Regulation of Vertebrate Cardiac Morphogenesis Cardiac Septation: A Late Contribution of the Embryonic Primary Myocardium to Heart Morphogenesis Early Signals in Cardiac Development Development of Specialized Cells Within the Heart Left/Right Patterning Development Gone Awry: Congentital Heart Disease
The heart is the first organ to form during embryogenesis and its circulatory function is critical from early on for the viability of the mammalian embryo. Developmental abnormalities of the heart have also been widely recognized as the underlying cause of many congenital heart malformations. Hence, the developmental mechanisms that orchestrate the formation and morphogenesis of this organ have...
متن کاملEvaluation of of the performance of the zebrafish (Danio rerio) model in nanotoxicology studies with emphasis on embryo pathology
The present study was conducted to evaluate the performance of zebrafish (Danio rerio) as a model in embryo and fetal pathology in nanotoxicology studies. Examination of the sources showed that it is possible to completely inhibit hatching and fetal death when exposed to nanoparticles, because nanoparticles interact with hatching enzymes. Zebrafish embryo developmental abnormalities have been s...
متن کاملOrder and coherence in the fate map of the zebrafish nervous system.
The zebrafish is an excellent vertebrate model for the study of the cellular interactions underlying the patterning and the morphogenesis of the nervous system. Here, we report regional fate maps of the zebrafish anterior nervous system at two key stages of neural development: the beginning (6 hours) and the end (10 hours) of gastrulation. Early in gastrulation, we find that the presumptive neu...
متن کامل